

|  |  | F |
|--|--|---|
|  |  |   |
|  |  |   |

| A09 DC Coil         | Ch. I page 7  |
|---------------------|---------------|
| STANDARD CONNECTORS | Ch. I page 21 |

# ADC.3... DIRECTIONAL CONTROL VALVES CETOP 3 SOLENOID OPERATED WITH REDUCED OVERALL SIZE

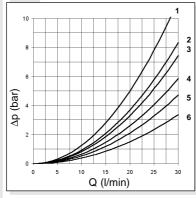


The ARON NG6 directional control valves are designed for subplate mounting with an interface in accordance with CETOP RP 121 H-4.2.4.R03 and /or UNI ISO 4401 - AC - 05 - 4 - A standards.

The use of solenoids with wet armatures allows an extremely safe construction completely dispensing with the need for dynamic seal. The solenoid tube is screwed directly onto the valve casting whilst the coil is kept in position by a ring nut.

The operation of the directional valve is electrical. The centering is achieved by means of calibrated length springs which, once the impulse is over, immediately reposition the spool in the neutral position. To improve the valve performance, different springs are used for each spool.

The solenoids, constructed with a protection class of IP65 in accordance with BS 5490 standards, are available in direct current form and different voltages. The electrical controls are equipped with an emergency manual control inserted in the tube.


The ADC.3 valve uses shorter solenoids than the standard AD.3.E to reduce the overall dimensions

The solenoid coils are normally arranged for DIN 43650 ISO 4400 type connectors (standard version); is available on request these variant solenoid: with AMP Junior connections, with AMP junior, solenoid with flying leads or solenoid with flying leadsand integrated diode.

The recommended fluids are hydraulic mineral based oils in accordance with DIN 51524 and it is recommended that filters should be fitted to ensure a maximum contamination level of class 10 in accordance with NAS 1638,  $\Omega_{sc} \ge 75$ .

| Max. pressure ports P/A/B | 3/T 250 bar                              |
|---------------------------|------------------------------------------|
| Max flow                  | 30 l/min                                 |
| Max excitation frequency  | 3 Hz                                     |
| Duty cycle                | 100% ED                                  |
| Fluid viscosity           | 10 ÷ 500 mm <sup>2</sup> /s              |
| Fluid temperature         | -25°C ÷ 75°C                             |
| Ambient temperature       | -25°C ÷ 60°C                             |
| Max contamination level   | class 10 in accordance                   |
| with NA                   | AS 1638 with filter \$ <sub>25</sub> ≥75 |
| Weight with one DC solen  | oid 1,25 Kg                              |
| Weight with two DC solene | oids 1,5 Kg                              |

### PRESSURE DROPS



| Spool         | Connections |     |                   |                  |     |
|---------------|-------------|-----|-------------------|------------------|-----|
| Spool<br>type | P→A         | Р→В | $A \rightarrow T$ | $B{ ightarrow}T$ | P→T |
| 01            | 4           | 4   | 4                 | 4                |     |
| 02            | 6           | 6   | 6                 | 6                | 6   |
| 03            | 4           | 4   | 6                 | 6                |     |
| 04            | 3           | 3   | 2                 | 2                | 5   |
| 15E-16E       | 6           | 3   | 1                 | 5                |     |
| 15F-16F       | 3           | 6   | 5                 | 1                |     |
|               | Curve No.   |     |                   |                  |     |

The diagram at the side shows the pressure drop curves for spools during normal usage. The fluid used is a mineral oil with a viscosity of  $46 \, \text{mm}^2/\text{s}$  at  $40 \, \text{C}^\circ$ ; the tests have been carried out at a fluid temperature of  $40 \, \text{C}^\circ$ . For higher flow rates than those in the diagram, the losses will be those expressed by the following formula:

$$\Delta p1 = \Delta p \ x \ (Q1/Q)^2$$

where  $\Delta p$  will be the value for the losses for a specific flow rate Q which can be obtained from the diagram,  $\Delta p1$  will be the value of the losses for the flow rate Q1 that is used.

### **O**RDERING CODE

ADC

Directional valve

3

CETOP 3/NG6

E

Electrical operator

\*\*

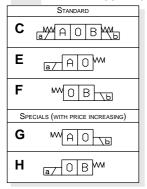
Spool (tables at the side)

\*

Mounting (table 1)

\*

Voltage (table 2)


\*\*

Variants (table 3)

1

Serial No.

### TAB.1 - MOUNTING



### TAB-2 - A09 Coll (27 W)

|                                      | TABLE - A03 OOL (21 11) |                                              |  |  |
|--------------------------------------|-------------------------|----------------------------------------------|--|--|
| DC VOLTAGES                          |                         |                                              |  |  |
| L<br>M<br>N                          | 12V<br>24V<br>48V*      | 110Vac/50Hz<br>120Vac/60Hz<br>with rectifier |  |  |
| P<br>R<br>S                          | 110V*<br>98V*<br>196V*  | 220Vac/50Hz<br>240Vac/60Hz<br>with rectifier |  |  |
| W Without DC coils                   |                         |                                              |  |  |
| Voltage codes are not stamped on the |                         |                                              |  |  |

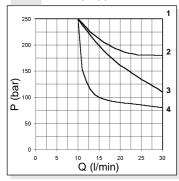
Voltage codes are not stamped on the plate, their are readible on the coils.

\* Special voltages

### TAB.3 - VARIANTS

| Variant                                | CODE |
|----------------------------------------|------|
| No variant                             | 00   |
| Viton                                  | V1   |
| Pilot light                            | X1   |
| Rectifier                              | R1   |
| Emergency button                       | E1   |
| Rotary emergency button                | P1   |
| Solenoid valve without conncetors      | S1   |
| Cable gland "PG 11"                    | C1   |
| Viton + Pilot light                    | VX   |
| Viton + Rectifier                      | VR   |
| Pilot light + Rectifier                | XR   |
| AMP Junior solenoid                    | AJ   |
| Solenoid with flying leads (250 mm)    | FL   |
| Solenoid with flying leads (150 mm)    |      |
| and integrated diode                   | LD   |
| Other variants relate to a special de- | sign |

### STANDARD SPOOL


| Two s         | Two solenoids, spring centered "C" Mounting |          |                    |  |
|---------------|---------------------------------------------|----------|--------------------|--|
| Spool<br>type | MA OB W                                     | Covering | Transient position |  |
| 01            |                                             | +        | XIIIII             |  |
| 02            | M                                           | -        | XHHHI              |  |
| 03            | MX   1   1   1   1   1   1   1   1   1      | +        |                    |  |
| 04*           |                                             | -        |                    |  |

| 0             | ONE SOLENOID, SIDE A "E" MOUNTING      |          |                    |  |  |
|---------------|----------------------------------------|----------|--------------------|--|--|
| Spool<br>type | A B W                                  | Covering | Transient position |  |  |
| 01            |                                        | +        |                    |  |  |
| 02            | a/ X I                                 | -        |                    |  |  |
| 03            |                                        | +        |                    |  |  |
| 04*           |                                        | -        |                    |  |  |
| 15            | a/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | -        | XHII               |  |  |
| 16            | a/XII                                  | +        | X1.1               |  |  |

| ONE SOLENOID, SIDE B "F" MOUNTING |         |          |                    |  |
|-----------------------------------|---------|----------|--------------------|--|
| Spool<br>type                     | WO B    | Covering | Transient position |  |
| 01                                | WIII TE | +        |                    |  |
| 02                                | WHITE I | -        |                    |  |
| 03                                | WHILE   | +        |                    |  |
| 04*                               | WHINTS  | -        |                    |  |
| 15                                | wXIII_  | -        | XHII               |  |
| 16                                | ~XIII_  | +        | XIIII              |  |

<sup>\*</sup> Spools with price increasing

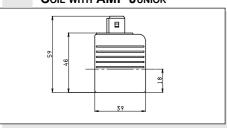
### LIMIT OF USE



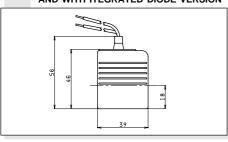
| Spool | n°    |
|-------|-------|
| type  | curve |
| 01    | 2     |
| 02    | 1     |
| 03    | 3     |
| 04    | 3     |
| 15-16 | 1(4*) |

 $(4^*)$  = 15 and 16 spools used as 2 or 3 way, follow the curve n°4

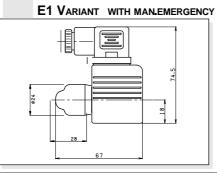
The tests have been carried out with solenoids at a temperature of 50 C° and a voltage 10% less than rated voltage with a fluid temperature of 50 C°. The fluid used was a mineral oil with a viscosity of 46 mm²/s at 40 degrees C. The values in the diagram refer to tests carried out with the oil flow in two directions simultaneously (e.g. from P to A and at the same time B to T).


In the cases where valves 4/2 and 4/3 are used with the flow in one direction only, the limits of use could have variations which may even be negative (See curve No 4 and Spool No 15-16). The tests were carried out with a counterpressure of 2 bar at T port.




# Overall dimensions E = Manual override Fixing screws UNI 5931 M5x30 with material specification 12.9 Tightening torque 5 ÷ 6 Nm / 0.5 ÷ 0.6 Kgm




### Coil with AMP Junior



## COIL WITH FLYNG LEADS, AND WITH ITEGRATED DIODE VERSION



### DC coils A09



# P1 VARIANT WITH ROT. EMERGENCY

"non

| <u> </u>                                           | -            |
|----------------------------------------------------|--------------|
|                                                    |              |
| Type of protection (in relation to connector used) | IP 65        |
| Number of cycle                                    | 18.000/h     |
| Supply tolerance                                   | ±10%         |
| Ambient temperature                                | -30°C ÷ 60°C |
| Duty cycle                                         | 100% ED      |
| Insulation class                                   | н            |
| Weight                                             | 0,215 Kg     |

| Voltage<br>(V) | Max winding temperature<br>(Ambient temperature 25°C) | RATED POWER (W) | RESISTANCE AT 20°C (OHM) ±7% |
|----------------|-------------------------------------------------------|-----------------|------------------------------|
| 12V            | 123°C                                                 | 27              | 5.3                          |
| 24V            | 123°C                                                 | 27              | 21.3                         |
| 48V*           | 123°C                                                 | 27              | 85.3                         |
| 98V*           | 123°C                                                 | 27              | 355                          |
| 110V*          | 123°C                                                 | 27              | 448                          |
| 196V*          | 123°C                                                 | 27              | 1422                         |
| * Special volt | ages                                                  |                 |                              |